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The system of Navier-Stokes equations which define the motion of a heavy 
viscous incompressible fluid in the blanket covering a rotating sphere whose 
center moves along a circle is solved with allowance for transport and Coriolis 
inertia forces. The derived solution is valid on the assumption that the sphere 
radius is considerably greater than the mean thickness of the fluid blanket and 
that either the axis of sphere rotation diverges slightly from the normal to the 
orbit plane, or that the angular rotation velocity P of the sphere is consid- 
erably greater than the angular rotation velocity w of the sphere center a- 
bout the orbit center. Existence of lattitudes on the sphere at which separation 
of fluid from its free surface is possible is established. Relation mtween fz 
and (c) at which intensive meridional currents from the equator to the poles 
are possible in the fluid blanket, is determined, The particular case of 0 = 0 
of flow in the fluid blanket induced by the rotation of the sphere about its axis 

is analyzed, 

1. Let us consider a sphere of radius a, rotating aboutoneof its diameters at 
constant angular velocity B and its center describing a circle of radius R at con- 
stant angular velocity w relative to the circle center 0, . We assume that the 
angle 4 between R and o is constant. We use a Cartesian coordinate system 
whose origin is at the sphere center 0, the 0% - and Oz -axes coincide, respect- 
ively , with the intersection line of the equatorial and orbit planes and of vector Q ; 

the Oy -axis lies in the equatorial plane ( Fig. 1, a ). The Ox -axis orientation re- 
mains unchanged during the motion of the sphere on its orbit, i. e. its motion is trans- 
lational. We denote by Ro the initial position of vector R drawn from the orbit 
center 0, to the sphere center 0 , which is parallel to the Ox -axis and faces 
in the opposite direction, Angle X between the OS -axis and vector (-R) is, then, 
equal to the angle of turn of vector R from the initial position R. (Fig. 1, b 1. 
Hence 

x = at’, 0, = 0, ov = - 0 sin I#,, 0, = w cos II, 
(1.1) 

R, = - R cos x, Rv = - R sin x cos I#, R, = - R sin x sin 9 

We denote by g the acceleration of gravity of the field created by the sphere, 
and assume that the sphere is covered by a blanket of heavy viscous incompressible 
fluid. We disregard tidal forces and determine the velocity field v and the hydro- 
dynamic pressure p’ in the fluid in its relative motion around the sphere, Since the 
rotation around center 0, at angular velocity o is the transport motion, the 
Corio&s acceleration is 2 (0 x v), and the transport acceleration is defined by 
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where r is the radius vector from the sphere center to a point of fluid. This means 

that the Navier-Stokes equations of the fluid relative motion are 

aviat’ + (vV) v + V [p’ / p + gr + (c0.r)~/2 - co2 P/2 - co2 (r .R)] + (1.2 1 
Z(oxv) = YVV, vv = 0 

These equations must be solved on the assumpticn that the fluid adheres to the sur- 
face of the sphere and that normal and tangent stresses are absent at the unknown free 
surface. Since the transport acceleration, - 

b 

a 

Fig. 1 

an external force appearing in (1.2 ), is of period 2n/o, the general solution of the 

considered problem must be of the same period with respect to t’ for any arbitrary 61. 

The exception is presented by the eigenvalues of vector 0 for which bifurcation of 

solutions of the homogeneous boundary value problem (1.2 ) is possible. Such values of 
o are not considered here. The analysis is limited to purely periodic solutions. 

Problems similar to the one considered here are found in oceanography [l], met- 
eorology [2 1, and the theory of planets [3 1, 

We introduce spherical coordinates r’, 8, rp with their pole at the sphere center 

0. Latitude 0 is measured from the sphere rotation axis Q, and the longitude 

9 from the half plane XOZ. In this system the condition of adhesion and absence 

of stresses at the free surface r = %’ (0, cp, t’) are of the form 

Vr = vs = 0, V, = Qasin 0 for r= a (1.3 ) 

Function 5’ (0, cp, t’) which determines the free surface satisfies the equation 

We introduce the characteristic length L = 6 equal to the thickness of the 
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fluid blanket of the stationary sphere, and the characteristic velocity v = v@. We 
then obtain such fundamental dimensionless characteristics of flow as: the Reynolds,the 
Froude, and the Rossby numbers 

VLv-’ = 1, P (gL)-’ = v2g-‘6-3, V (2QL)-’ = vie (28)-i 

We further assume that 

V, = Qr sin 0 + w,, (1.5 1 

and taking into account (1. 1) , write (1.2 ) in spherical coordinates, We then substitute 

expression (1.5 ) into (1.3 ) and (1.4 ) and pass in the obtained equations and boundary 

conditions to the dimensionless variables 

8 
ES- a, r==a(l+&IC), t4;, h=yq +a(l+eg) (1.6) 

SY 
v, = Ygu, vg = -?iV, 

6 
w, = $4 p%$gp, a _@$ 

For the determination of u, V, w, p, and 5 we now have the following equa- 
tions and boundary conditions : 

a=v au _--- 
8x2 at h32hw(cosBf+)-& (1.7) 

2~xsin8=ef,(u,v,w,p,e), ~=ef3(u,v,w,~) 

8% aw ---__ 
ax2 at h aw ~-22hv(cose+~x)-_~=-f,(lk,v, W,P,E) 

SIII~ a9 

g+g+s&g +72ctg0=8f4(u,v,w,e) 

u=V=w=O for x=0 

p -= 8f5 (u), g = efs (24, v, e), $ = ef7 (26 W, e) for 5 = P 

g-l-h% = efe (6 v, w, 59-q 

where 

+ a@sin28 +m(l + tx)x (1.8) 

[ 
sine cos cp cm at + (~0s 4 sine sin cp f sin $ cos e) sin at + 

& (f+ es) (x” - O] 

3t = c0sgc0se- singsin8sincp 

and fl, fit . . . t fs are differentiation operators of an order not higher than the 
second. Since they are functions of a s they are bounded for E = 0. Hence the 
solution of problem (1.7 ) for small E can be sought in the form of series in positive 
powers of e ; for the zero terms of these series it is necessary to use equations and 
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boundary conditions that are obtained from (1.7 ) for e = 0. For the determination of 
the free surface we have the equation 

which is periodic in t and cp and whosesolution is 5 = const. Then it follows from 
(1.6 1 that t = 1, and (1.7) yields equations and boundary conditions for p and q 
in the zero approximation 

39 --0, p12=1=o 
3X 

(1.10 1 

Settingin(1.8) 5 = 1 and using (1.10 1, we obtain the formula for q which 
is valid for all 3, since q is independent of z, and p for z = 1 is zero. 

The obtained expression for q is introduced in (1.8 1, and the resulting equation is 

solved for the dimensionless hydrodynamic pressure in the fluid blanket, yielding 

P =~(1-~)-n(1-~)si~~~+m(1--s)[sin0cos~eosat+ 

(cos~sinOsincp+sin~cosO)sinat++-(x7-- I)] + 0 (4 

Let us further assume that the orbit radius is considerably greater than the sphere 
radius, and that either the axis of rotation of the sphere is slightly divergent from the 
normal to the orbit plane, or that the frequency of the sphere rotation about its axis 
considerably exceeds the frequency of rotation of the sphere about the orbit axis, i. e. 

a<& +-sin*)<1 (1.11) 

Substituting on these assumptions (1.8 1 into (1.7 1 and setting e = 0 , we obtain 
the equations and boundary conditions of the zero approximation for u, v , and W 

a% av ---_ 
axz at h~+qw=-?z(l+~cos~)~+ (1.12 1 

q (e”Ki - da*) sin I# sin 0 + $f- ms e sina -$ [&at+@ + e-i(“+9)] + 

+sec0s a + [&at-V) + &(a+)] 

a% aw -_-_ 
ax? at 

?b aw F-qv=$sin 9 + [&at+*) - &tat+*)] - 

+lS Z $_ [&Of*) _ e-i(a’-V)] 

rl=2h(i++hsg)~se 

u = w = 0 for 2 = 0, f3vjax = aw/ax = 0 for x =I 

Having determined v and w , for the dimensionless radial velocity we obtain 

the formula 
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The solution of system (1.12 ) is of the form 

u = no + 2 Re [uIeiaf f v,ei@+*) + usei@*-+)] 
(1.13) 

w = wi + 2 Re [wIeiat + w,ei(af+@ + wseila’-q)] 

where UI and wj (j = 0, d, 2, 3) satisfy a system of equations and boundary con- 

ditions of the form 

vSW=O forz=O, g==$=O for z=t 

where jI takes one of the following values : 0, a, a & h, and A and 'B depend 

only on 8 and for each #J are determined by right-hand sides of (1.12) after the 

substitution of (1.13 ) into the left-hand sides and equating the coefficients at equal ex- 

ponential functions, 
The system (1.12) of ordinary differential equations and boundary conditions with 

constant coefficients and free terms has the solution 

v = AF 0% 2, I q I) + BG 0% 5, n), W = - AG 64 ~7 rl) 

BF (I4 3, I ‘I I> 

+ (1.14) 

Note here also the relationships 

s (1 Tj I, z) = I- ch f@$$--$~ (1.15) 

lim G(fi, 5, q) = 
Inl-W 
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where the upper dash denotes quantities complex conjugate to S . 
The formulas for functions Vj and wj that appear in (1.13 1 and are obtained 

from (1.14 1 for corresponding va1ue.s of B, A , and B are 

u0 = i-+j 
( 
$- + $- cosg 

) 
ImS(IvI, s)sin20 (1.161 

n wo=-- 
‘1 ( ++ G cos$)ReS(Iq(, s)sin20 

01 = FF(a, 3, I?jI)sin$sinO, w1 = -q G(a, t, r))sin$sin9 

Vs = $-sin *-$(F+cosB + iG+), w2 = $sin alp -i_(-G+cos 0+iF+) 

v3 = +s 2 9 T( F_cose--iG_), w3 = -9~0s 2+(G_~~~ e+iF_) 

F* = F (a & A, ~9 I rl I>, G, = G (a k A, 5, rl) 

2. I,eaving aside a complete analysis of formulas (1.13 > and (1.16 1, we shall ex- 
amine the case of ado0 and h-+oo, when (1.14) -(l. 16 1 imply that the 
ratios voln, w,/n, vjfm and wjlm (j = 1, 2, 3) tend to vanish at all latitudes 

8, except those that are determined by the conditions I q I = 0 , 1 Q 1, and 
I a k h I. We shall consider each of these cases separately. 

In the first case, I q J = 0, formulas (1.13 ) by virtue of (1.16 1 and (1.15 > as- 
sume the form 

“=G 
( 
-+-t $-cos$)s(2-z)sin28- (2.1) 

q Re [S* (I a I, 5) ei”“] sin $ sin 8 + 

m “~~~ ’ Re [is* (I a + h 1, x) ei(d’+Q)] cos 8 + 

m co’2 ‘t ’ Re [is* (I a - h J, 3) e+“‘*)] cos 8 
U- 

WE- m~~~‘Re [S* (I a + h 1, z)ei(ot’+@] + 

“:?a4 Re[S*((a--hl,s)ei(““~)] (I~I=o) 

It follows from (1.12) that the equality 1 q I = 0 is possible in two cases. 

a) 8-n/2 ( latitude of the equator ). The first of formulas (2.1) yields 

v=- s Re [S* (I a 1, 5) ei@I’J sin $ (0 - 3t / 2) 

and the second remains unchanged. If the angular velocity of the sphere about its axis 
is equal to that of the sphere motion along the orbit (a = h), then, as implied by 

(2.1) and (1.15 1, 

w= -&nms(2 - s) co9 $-sin (ot’ -,)+0(F) 

(0 = n/2, a = h -f 00) 
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In dimensional form that velocity, with allowance for (1.6 ) and (1,9>, is of the 
form 

w, = &YR 
- 2ycos a9 2 sin (ot’ - cp) (2.2) 

If 0=-Q, then in virtue of (2.1) we have a similar situation: 

oWR . 
w, = - sin2 +sin (or’ + cp) 

2v 
(2.3) 

(Cl = n/2, - tXP/v = oP/v -co, x = 1) 

Thus, when 01 # & h, h -+ 00, 52 # - o cOS’$, 1 q 1 # 1 a I,and I CL &A I, 
the ratios vlm and w/m tend to vanish at all latitudes. If a = + h, these - 
ratios tend to vanish at all latitudes, except in the equator neighborhood where the 

transversal velocity at the free surfaceis determined by formulas (2.2) or (2.3) with 
allowance for (1.5). For a fairly large thickness 6 of the fluid blanket the transversal 
velocities (2.2 ) and (2.3 ) in the equator neighborhood can be arbitrarily high. This 
means that under conditions considered here the sphere is incapable of retaining at its 

surface a blanket of arbitrary thickness. 

b) Q=--UCOSI#. In this case it is necessary to specify 9 - 0, i. e. that 
the sphere axis of rotation is to be slightly divergent from the normal to the orbit plane, 
if condition (1.11) is to be satisfied. On these assumptions formulas (2.1) are of the 

form 
v= - +X(2--z)sint3coSt3+0(+) 

w= 0 =-CiJcos~, h-m) 

or in dimensional form at the free surface 

Qagza sin 0 cos 8 Ve---_ (n = - 0 co9 4, QP/v - co, 2=1) (2.4) 

This means that, when the sphere rotation about its axis is in opposite direction to 
that of its rotation about the orbit axis and 51 = --o cos 4, then intensive meri - 

dional flows from the equator to the poles at velocity (2.4) are observed. 
In the second case 

(2.5) 

formulas (1.13 ) - (1.16) yield for considerable a and h with allowance for (1.6) 
and (1.9 ) the following dimensional relationships : 

0WR 
7&l = 4y sin 9 sin of sin 8 (2.61 

w”CYR 
WV =-4y sin $ cos wt' sin 8 sgn q sgn a (Irl=lcl* z-1) 

Furthermore, if o = -j- 52/z, then at latitudes (2.5) terms of the same order - 
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and of form 

are added in (2.6 ) . 
In the third case 

and if O=*st or 0 = -& Q/2 , terms of the same order are added at lati- 
tudes(2.‘7)in(2.8), 

It follows from (2.6) and (2.8) that for fairly large S, R, and o, as well as 
for fairly small Y separation of fluid from the free surface must occur at latidues 
(2.5 ) and (2.7 ) at velocities (2.6 ) and (2.8 ), respectively, independently of the manner 
of increase of a and L. 

Note that the possibility of fluid escape from the equator is, generally speaking, 
obvious, and since in the equality (1.5 ) this is determined by the term Qa , is not 

affected by viscosity, However velocities (2.2 ) , (2.3 ) , (2.6 ), and (2.8 ) at correspon- 
ding latitudes can exceed Qa . In such cases separation of the blanket fluid is deter- 
mined not only by viscosity but, also, thickness 6, the orbit radius R , the angular 
velocity w of rotation of the sphere about the orbit axis l 

8. In conclusion we consider the simple limit case of CO = 0 which relates to 
the motion of fluid induced by the rotation of the sphere about a stationary axis, In this 
case m= 0 and formulas (1.13 ) and (1.16 ) yield 

Since for 0 = 0 the flow of fluid is steady and independent of angle q , and 
symmetric about the equatorial plane, it is sufficient to consider the values 0 < 

0 < n/2. For radial velocity we have 

U= 
1 a: 

--sine-z7 s vsin8dy (3.2) 
U 
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which together with boundary conditions (1.12) implies that U, u . and IU attain their 
maximum absolute values at the free surface. Hence it is sufficient to investigate for - 
mul~(3.l)and(3,2)for y = 0 

n cos 0 
u=-- 

sh 2k + sin 25 
h ( I--- 4A ) - (3.3 > 

n sin2 e ~ (& 2g f cos 26 - ” 2E ttsin 2E _ sh2 2’ yAsin2 2’ ) 

Since in the equatorial region, 0 -+ a/2, 8 is a small parameter, formulas 
(3.3 ) are of the form 

U= ~cos0+O(co&3), w =+os0+o(cosse) 

v=~cos”6+O(cos39) (5=~, e_,n/2) 

Al~ough at the equator itself u = u = w = 0, the radial and the transverse 
velocities in the equator neighborhood decrease slower than the meridional velocity, 
there is in equatorial latitudes a flow of fluid from the depth to the surface. 

We restrict our analysis at some distance from the equator to the case of: % 3 co, 
whenalsc E+ 00, and formulas (3.3 ) yield 

U= - ?z$! + 0 (r&h-%), 

w= +e- fh sin 0 sin (l/h cos 0) [ 1 + 0 (e-z-)] 

(r=f, 0+,X/2) 

At the pole 

r.7 = u> = 0 (0 =L O), u = --++o(nh-‘J~j f5=f, e=o) 

i. e, radial flows of fluid from the surface to the depth predominate at polar latitudes. 
The obtained re.suEs may be applied to various problems of the theory of rotating 

fluids [4] and in the theory of planets which is at present the subject of considerable 
attention. For instance, the numerical modeling carried out in [5] reproduces the ax- 
symmetric structure of Jupiter bands, which is in qualitative agreement with the con- 
clusions obtained above for latitudes (2.5 ) and (2.7 > . 
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